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Spherically symmetric perfect fluid configurations in general relativity are modelled using 
finite element discretizations for the radial direction and finite difference discretizations for the 
temporal direction. The equations are derived from a variational principle based on a 
Schwarschild-like metric and the relativistic enthalpy for a perfect fluid. A simple explicit two- 
step scheme is used in time, and the weighted residual method with various spline 
approximations radially. The linear spline approximation is successful, but does have an 
instability which becomes serious during the later stages of an evolution. Cubic Hermite 
splines are more stable, but the velocity near the surface shows instabilities. A special cubic 
Lagrange approximation for the velocity, and Hermite approximations for the other variables, 
proves the best scheme, but it is still necessary to introduce some smoothing algorithm near 
the surface. 0 1985 Academic Press, Inc. 

1. TNTRODUCTI~N 

The evolution of isolated bodies in general relativity is of some interest to 
astrophysicists and relativists. In particular there are applications in the study of 
quasars, galaxies, stellar evolution and gravitational radiation. These subjects are 
complicated by the necessity to include “realistic” matter and asymmetric 
geometries. Algebraic techniques are not yet able to produce such detailed models 
so numerical methods must be used. 

There are various numerical formulations available, but only the finite difference 
method (FDM) has been used for the dynamic evolution of relativistic fluids. The 
majority of these codes have treated spherically symmetric geometries, and those 
which advance to axisymmetry are not completely satisfactory. It is important, 
therefore, to develop alternate techniques which can model the axisymmetric con- 
figurations and act as independent checks on the FDM codes. 

There are two basic avenues for the development of these alternatives: First, the 
underlying structure of general relativity can be utilized to develop specialized 
numerical techniques. This includes the methods of [12], which have only been 
applied to vacuum space-times, and the Regge calculus, which has recently been 
applied to Einstein-Rosen wave models and static spherically symmetric polytropes 
[9]. Second, a standard formulation can be used, but with different numerical 
methods for discretizing the equations introduced. This is the area to be 
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investigated in this paper. In particular the general class of discretizations called 
Finite Element Methods (FEM) will be used. 

However, there have been few FEM applications in relativity so this paper will 
describe some mixed FEM-FDM models of spherically symmetric polytropes. 
These are relatively simple, and the stability and accuracy of the FEM can be 
investigated. 

The FDM codes for spherical symmetry which have been described in the 
literature fall, broadly, into three categories. The original work of [15] used co- 
moving coordinates with a diagonal metric. This was extended by [5], [16] and 
[17] to include more realistic physics and better slicing conditions, but still used 
co-moving co-ordinates. The second category, typified by [18] and [ 191, uses 
Eulerian coordinates, and the third category, containing only the work of [20], 
casts the equations in characteristic form. 

Unfortunately detailed descriptions of accuracy and efficiency have not been 
published. The best numbers for comparison come from [ 171, where it is noted that 
the total mass for a 60-zone bounce is conserved to 0.002% after 30,000 time steps. 
For a complete collapse the mass is conserved to 0.01% up to the time of event 
horizon formation. These two numbers should be kept in mind when evaluating the 
FEM codes presented in this paper. 

The conventions of [6] are followed, except that latin indices take the values 0, 
1, 2 and 3. Relativistic units will be used, with the gravitational constant and the 
speed of light set to 1. The basic unit is the centimetre. 

2. EQUATIONS 

It is convenient to derive the equations from a variational principle. There exist 
many actions for Einstein’s equations describing perfect fluids (e.g. Cl-33 or [ 13]), 
but almost all are inadequate for our purposes, in that they do not precisely define 
the fluid quantities which are to be varied. However, the description derived by 
Schutz [lo] does not have this problem. 

Schutz describes the fluid by six velocity potentials but we assume that the fluid 
is isentropic, which allows us to write 

where U, is the fluid four-velocity. There are four velocity potentials: II/, a, /I and 
the specific enthalpy w. The normalization U, U“ = - 1 gives one more relationship, 

(1) 

and leaves only three independent potentials: tj, a and /I. 
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The action is 

S = jz (R + 4np)( -g)l’* d4x 

where C is some four-volume of interest and p is the pressure. The quantities to be 
varied are the metric components g,, and the fluid potentials II/, a and fi. The 
equation of state gives p =p(w), and w  = w( gab, II/, a, /?) by Eq. (1 ), so the variation 
is well defined. 

Many metrics have been used for spherically symmetric models [ 111. We feel 
that a metric based on the well-known and well-understood Schwarzschild form is 
of greatest interest, so we choose 

ds* = -B*( 1 - 2m/r) dt* + (1 - 2m/r) - ’ dr* 

+ r*(dO* + sin* Bdq*) 

where B and the gravitational mass m are functions of r and t. This metric has the 
added advantage of producing an extremely simple action; 

s = joR I,’ ( m,, B + 4nr*pB) dr dt 

- ‘f(t)m(r=R, t)dt 
i 0 

where the volume of integration is the sphere of radius R which is extended in time 
between t = 0 and t = T, and f is an arbitrary function. 

The variation can be further simplified by noting that one of the velocity poten- 
tials may be arbitrarily defined on the initial slice [lo]. We choose CI = 0. However, 
the fluid equation for a [lo] is U”cc,, = 0 so, unless a singularity develops, we have 
CI = 0 always. Also U@ = WV = 0 by the symmetry of the problem, so we can write 

tiff 
w2 = B*( 1 - 2m/r) - $:( 1 - Wr), 

with U, = $,*/w and U, = It/,*/w. Schutz warns that CI and /? may become singular but 
still leave the quantity t~fi,~ well behaved. We feel this is not an important con- 
sideration unless real singularities (“perfect” shocks) form, and ignore the problem. 

The action can now be varied to give 

As = !‘: JoR c m,r - 4nr*(p + $:(I- 2mlrNp + PYw*)I 6B 

+4x 
[ ( 

_ r2(P+P) vhf 

w* > B(l -2m/r) ,f 
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+ r 
( 

z(P+P) 
7 B( 1 - 2mlr) Icl,r >I Sic/ drdt 

,I 

+joT[(B-f(t))Gm]~-ndt+4n~oTr2~B(l~~m,r)S~~~~~dt 

-47c I 
‘,‘~B(l-2rn/r)Ijr,iit/~:~~dr 
0 

where p is the total energy density. 
The last three terms are boundary terms and should vanish. The first one does so 

if we take B(r = R, t) =f(t), thereby setting the scale of t. The second boundary 
term vanishes at r = 0 trivially and at r = R if we assume that R is in a vacuum. The 
last term vanishes at t = 0 if $,1 (equivalently U,) vanishes on the initial slice. We 
are not concerned with the t = T boundary, as it can always be taken as being 
beyond the domain of numerical integration. 

Therefore the Euler equations are 

m,, = 4nr2(p + $:(l - 2mlrKp + p)/w2) 

B,, = 4nr y”,‘,T; (1 + 2$:( 1 - 2m/r)/w2) 

z(P+P) ti.1 
’ TB(l-2mlr) 

z(P+P) r ,zB(1-2mjr)ti,, . 
,r 

We note that only the derivatives of Ic/ appear as physical quantities, which 
necessitates using a higher-order approximation for $. To avoid this we define new 
variables: 

x= -(P+P) II/,, 
w2 B( 1 - 2m/r)’ v= $,r and 

Then the equations become 

V,, = (uB),r 

X,, = r-2(Br2V(l - 2m/r)(p + p)/w’)),, 

x= Jp+p) I;I-(V2+w2/(1-2m/r))1i2 

m,, = 4nr2(p + V2( 1 - 2m/r)(p + p)/w’) 

(2) 

(3) 

(4) 

(5) 

(6) 
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where 

U= -[(W2+V2(1-2m/r))(1-2m/r)~112. (7) 

We can now see the usual split into evolution equations ((2) and (3)) for the 
variables X and V, and into constraint equations ((4) (5) and (6)) for the variables 
m, B and w. 

The boundary conditions are: 

(1) m = 0 at the centre. This can be derived from the condition that the 
Riemann tensor of t = constant slices be well behaved everywhere. 

(2) V=O at the centre. This is the usual symmetry condition on the velocity. 

(3) X,, = 0 at the centre. Again this is a symmetry condition. 

(4) B = 1 at the centre. This is numerically advantageous, and implies t is the 
proper time for an observer at the centre, but we can always change the nor- 
malization if necessary. The Schwarzschild time (proper time for an observer at 
spatial infinity) takes B(surface) = 1 and satisfies the variational principle. It is this 
time which we will use to describe the results. 

(5) X=0 at the surface (vacuum). 

As initial conditions we specify V= 0 (stationary configuration) and X= X(r) 
(the enthalpy distribution). 

The variation of the action has isolated a complete set of evolution and con- 
straint equations from the Einstein equations. In this spherically symmetric 
situation only the G,, equation is missing. It is 

m,, = 4w*B( 1 - 2m/r) XV 

and is important as a check on the results. It implies that the total mass, m(R), is 
conserved, as is to be expected in spherical symmetry [6]. 

2a. The Equation of State 

We intend to test various finite element discretizations so we will use a simple 
polytropic equation of state. This can be stated in terms of w  as 

p=K(w- l)Yl(Y-1) and (w+Y- 1) 
P=P(W-l)(Y-l) 

where y is the usual polytropic index. This is equivalent to p = K,nY where n is the 
baryon number density. We take y = 513 and K = 1.075 x 10 - ‘* cm ~ *, which is 
based on the work of Miller [S]. 

581/58/3-l 
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3. METHOD I: LINEAR SPLINES 

3a. The Discretization 

The first discretization is a mixed FEM-FDM using linear splines and the 
Galerkin method for the space (r) dimension [7]. We will use m as a typical exam- 
ple. The approximation is m(r, t) = XI= i mi(t) Ni(r, rj( t)) where the ri form a set of 
suitable nodes. The Ni are the usual “hat” basis functions [7], although we allow 
the nodes ri to be functions of t. It is important to have this freedom as it allows the 
nodes to follow the evolution. Later in this paper we will discuss nodal positions in 
more detail, but for the present the ri are assumed to be known functions of t. 

In general we will use the Einstein summation convention for the summation. 
Also a prime (‘) will indicate the partial derivative with respect to r, and a dot the 
derivative with respect to t. 

The Galerkin method then gives, for the typical constraint equation m’=f, 

s 

R 

m,N,TN,dr= afNjdr 
I 

forj = 1, 2 ,..., n. 
0 

For the typical evolution equation, VI= g, we have 

&(t) N,+ Vi(t)f$, 
k 

gNj dr forj = 1, 2 ,..., n. 

Note the natural appearance of the grid velocity ?,, which follows from the depen- 
dence of the Ni on t. 

Much of the integration can be performed by hand, and some is amenable to 
integration by parts. For the evolution equation (3) we are left with: 

Y  
2B (P+P) v -----(1 -2m/r) Ni 

w2 r 

-,(P+P) 
i+ 1 

W2 
V( l -2mJr) N,! - c XjajNi dr 

j=r-1 1 
k, h,/3 + J$ h,/6 

= (1 - Wr)( V/r) N, 

&P+P) 
W2 

V( 1 - 2m/r) N’, - (X, fil + X,k,) N, 1 dr 

where hi = ri - ri- i. The remaining integrals will have to be evaluated numerically. 
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A similar set holds for the V equation (2), except that the known boundary con- 
dition is p1 = 0. 

The discretizations of the constraint equations are naturally partitioned into two 
sets. The first is 

x,= -(Pi+Pi) 
I 7 [ Vf + W:/( 1 - 2LVi/ri)] 1’2 

I 
(8) 

mi+l=mi-l +2 jr’+’ 47cr2(p + V2( 1 - 2m/r)(p + p)/w2) N,dr (9) 
r,- I 

m,=m,+2 
f 

‘*4w2(p+ V2(1-2m/r)(p+p)/w2)N1dr (10) 
f.1 

m,=O 

where B does not occur. The second set is 

Bi+ I= B, - I+ 2 Ir”l 4nr ~~2~~ ( 1 + 2 V2( 1 - 2m/r)/d) ~~ dr (11) 
I,- I 

plus the N1 equation, and B, = 1.0. 

3b. The Constraint Solver 

We assume that values for V and X are known on the time slice of interest, either 
from the initial data or by evolution from a previous time slice, and that values for 
m, w  and B are required. 

First we evaluate (8) at i = 1 (the centre) to get 

x Jl+Pl 
1 

Wl 

which can be solved, given X, and the equations of state, for wl. Then we solve 
Eq. (8) (at i= 2) and Eq. (10) for the two unknowns w2 and m2. This gives enough 
data to “evolve” outwards using (8) and (9), solving for mi+ L and wi+ 1 at each 
step, until the surface is reached. 

These values are used in the “B” equation (11) to again “evolve” outwards, this 
time solving for the B,. Note that these equations are linear in the Bi so the solution 
is trivial. 

Unfortunately the m and w  equations are highly non-linear. In particular (8) is 
very difficult to solve because w  appears in the form (w - 1)y’y - ’ through the 
equations of state. It is necessary to use an iterative scheme for the solution of such 
equations. 

The standard solvers we tried were not satisfactory as none of them would give 
good convergence rates for all w. For instance, the secant method is prohibitively 
slow when w  approaches 1. 

The best method we could devise uses a regular falsi iteration on the m equation, 
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with Eq. (8) solved for w  by a separate iteration whenever needed. The w  iteration 
uses the formula 

w= 1 +(y)(~-‘) (P/w2 + l/( 1 - 2m/r))(iPY)‘2 

which can be derived from Eq. (8) using the polytropic equations directly. At any 
given step of the m solution an approximate m is known, and a new w  is calculated 
by inserting a guess for w  on the right side of this equation and iterating until con- 
vergence occurs. 

This method is specific to polytropic equations of state, and a new method would 
have to be designed for other equations of state. 

3c. The Evolution Equations 

The discretized evolution equations form a set of first-order ordinary differential 
equations in time, of the form 

A,% = b, and A.v=b, 

where A, and A ,, are tridiagonal matrices. These matrix equations are easy to solve 
(on the computer) to give a set of equations 

Tci = g,yi and Fi=g,j 

which we will discretize with the explicit two-step finite difference method [8] as 
follows. The superscript refers to the time slice tea). 

Assume a consistent and complete set of data is known on t = t(+ ‘I. First evolve 
to &-l/2) by 

where dt = t@‘) - tcU- ‘I, with a similar equation for V. Then solve the constraints to 
give a complete set of data at tea- li2). The final step uses 

J$“’ - x,!“- ‘I= (dt) ggj- l!*) 

to give X (similarly V) at tea), and the constraint solver is again applied to complete 
an evolution to P). 

4. METHOD IIa: CUBIC HERMITE SPLINES 

Our experience with the equations for static space-times [4] suggests that cubic 
Hermite splines will produce a better approximation. This takes the form (again 
using m as a typical example) 

m = i [ImAt) Nli(r, rj(t)) + m,,(t) N*i(l, rj(t))l 
i= 1 
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where the Nai are piecewise cubic, with support [rip i, ri+ i]. They are normalized 
to give m(r,) = mii and m’(rJ = mxi [7]. 

To give better stability to the constraint solver (the constraints are hyperbolic) 
we have decided to use the weighted residual FEM, which allows us to choose 
weight functions. For the general constraint m’ =f we have 

s 
m’Waidr= fW,,dr 

s 

where the Wai are 2n weights. Unfortunately it is impossible to produce a good 
solver from these discretizations [4]. Instead we choose one set of weighted 
residual equations, with weight N,i, 

s 
r, 

mfNli dr = 
s 

" fNli dr 
rz- I I,- I 

and one set derived from the direct application of the differential equation, 

m2i =f (ri). 

The evolution equations are discretized in a similar manner, although different 
weights are used. For 6’= g we note that in all cases g contains at most first 
derivatives in r. Therefore we can take 

because the r-derivatives of the approximations are continuous. This gives 

Pli = g(r,) + VziPi (no sum on i). 

For the VZi evolution we use a weight NZi on [rip i, ri+ i ] which 

- && ,/2;/140 + l&(h; + h!+ i)/105 - I&+ &+ ,/140 

gives 

(12) 

g- ‘il ( Vljfij, + Vzjtizj) Nzi dr 
j=i- 1 1 

-13(&+1%+, - I&,hf)/420-11~‘,i(h’+,-h~)/210. (13) 

The explicit two-step evolution scheme can be applied to the Vii and Vzi. First the 
6’1i can be evaluated using (12), and this inserted in (13). The resulting tridiagonal 
matrix can be solved for the vZi, and then the two-step differencing applied. 

The X equation is simple to solve this way because we have boundary conditions 
X,, = 0 and X,, = 0. Unfortunately there are no known boundary conditions for V’. 
Applying the FEM method to both ends (weights N,, and NZs) results in an ill-con- 
ditioned matrix, as there is no condition to “nail down” any value. We have used 
the simple difference equation V,, = ( V,, - V,, _ ,)/h, but we might expect some dif- 
ficulties with the V evolution. 
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The constraints are solved as in the linear case. First we solve for mai and wai 
from the centre out, and then for B,,. Equation (4) for w  must be differentiated to 
calculate wzi, and this introduces the quantity dp/dw, which is calculated from the 
equation of state. 

5. METHOD IIb. CUBICLAGRANGESPLINESFOR V 

To alleviate the problems involved with approximating V’ we decided to try 
cubic Lagrange splines. These splines are awkward to use because it is not possible 
to have basis functions with support [rip,, r;,,]. Following [7] we choose basis 
functions which extend over [ri- 2, rif2], although this means that the function 
values at each node can no longer be used as the coefficients of the approximation. 
Instead we write V= c:zd y,(t) Q,(r, ri(t)) w  h ere the Qi are cubits in r, with sup- 
port [rip*, ri+2]. The formulae for the Qi are given in [4] and ensure that the 
approximation has continuous first derivatives. In the limit of constant h the second 
derivatives are also continuous. 

This approximation has the property 

Note that the quantities hi and h,+i occur in a non-trivial fashion. They can be 
chosen arbitrarily, as long they do not vanish. We choose h, = h, and h,, i = h,. 

For a typical evolution equation v=g, the Galerkin method gives 

J ‘E3 
j=i-3 

(YjQj) Qi dr = SfQ, dr - (grid velocity terms). 

This produces a seven-diagonal matrix with special boundary conditions for the top 
three and bottom three rows. To simplify this the weights are changed to the linear 
basis functions Ni, which restricts the integration to [ri- i, ri+ ,] and therefore 
produces a live-diagonal matrix. However, there are only IZ equations in the n + 2 
variables yi. The same problem, in disguised form, occurs with the Galerkin weight 
because the matrix is badly ill-conditioned, and can be singular. 

The usual solution is to apply boundary conditions. Only one is available here, 
V, = 0, and some other equation is needed. To get this V, is calculated directly, 
which is feasible because the approximations have continuous first derivatives, and 
only first derivatives occur on the right side of the V equation. This will lower the 
precision attained because the derivatives are approximated with lower accuracy, 
and is not a completely satisfactory solution. 
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6. GRID VELOCITY AND TIME STEP 

The grid must move to follow the collapse. In the previous discussion the ri have 
been assumed to be known functions of t. They are constrained by only one con- 
dition, that pi- i is less than ri. A simple choice is a linear spline approximation in t, 
given by r,(t) = rja-l)N(a-l)(t) + ria)(t) where t is in [tcop ‘), t’“)]. Then the ri”) are 
the nodes on time slice t = t@), and we can write 

r!a)=r!a~l)+3i(t(n)-t(a-1)) I I 

where 3, is the (constant) grid velocity between the two time levels. The set of ri” ~ I) 
is known, either from the initial data or a previous evolution, so we are left with the 
problem of calculating suitable ii on t(‘- ‘I, and a suitable time step 
dt = t(a) _ t(a- 1) 

First we assume that the outermost node stays on the surface. Then i, is given by 
the three-velocity of the surface, (V/U’),. 

Ideally the inner nodes should be chosen to give greatest precision to the 
numerical evolution, but useful estimates for the precision related to nodal position 
are not yet available. As an interim solution the ri are chosen to follow lines of con- 
stant mass, which gives 

- Bf Vi( 1 - 2m,/r,)’ Xi 

ri=pi+ ~Bi(l-2mi/ri)Xi/Ui’ 

This at least will ensure constant precision in the m evolution. 
The time step was limited by allowing a predetermined relative change (E) in the 

central X value, and by testing for the Courant condition. The Courant stability 
criterion gives 

dt < d,min[] C,h,], 1 Cihi+ 1 11 

where Cj is the three-velocity of sound in the fluid, and d, a parameter which 
should include all the details of a full stability analysis. We will choose d, 
experimentally. 

Note that ri < 1 (the speed of light) and Ci < 1, so the dt choice ensures that 
nodes will not cross and no time-consuming tests are required. 

7. INITIAL CONDITIONS 

As discussed in Section 2, we start with V= 0 (and I/’ = 0) and specify some 
initial matter distribution X (and X’). Then the constraint solver can be applied to 
calculate m, B and w. 

The matter distribution is calculated by multiplying a static solution (X0,,) by a 
factor 

1 + c1- c~‘((rf - 2rk) r + 2ri - rz)/(rfri(r, - r,)). 
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This is a simple cubic which ensures that X,,,, vanishes at rs and that X”,, vanishes 
at rl and r,. It has two arbitrary parameters: CI and r,,,. We choose a, and then find 
rm by solving the constraint equations and requiring that the new mass (m,) be 
identical to the static mass. 

The new model has X,,, = (1 + a) X,,,,, at the centre, and X,,, = X0,, at r = rmr 
which, for positive ~1, results in an initial model with a central peak in the density. 

The original static data are supplied by various FEM codes for the static 
equations, which are described in [4]. The linear code uses a linear spline based 
static solver, and the cubic Hermite code a cubic Hermite based solver. The 
Lagrange modification only affects V, which vanishes, so the cubic Hermite data are 
sufficient with the yi set to zero. 

The different static solvers made it impossible to give identical initial data to all 
the codes. However, the data sets never varied by more than a relative difference of 
1% in the surface radius and mass. More seriously, the number and position of 
nodes varied, due to a more efficient subroutine using derivative information in the 
cubic Hermite static solver. Therefore the number of nodes and some information 
on their position is given in the tables. 

8. SOME RUNS AND COMPARISONS 

The codes exist on a CDC 7600 machine at the University of Manchester 
Regional Computing Centre, and calculations are performed in 60-bit precision. All 
numerical integration is performed using Simpson’s rule with 11 nodes in every 
interval [ ri _ i , ri]. More nodes make no difference within the machine precision. 
For the same reason all iterations were allowed to continue until successive 
estimates had a relative separation of less than lo- 12, which is approximately the 
machine precision. 

The first tests ran static (a = 0) initial data with wi = 1.178. This model is 
physically of marginal stability [ 141 so we would expect the physical stabilizing 
forces to be small. Therefore any numerical instabilities should become obvious 
quite rapidly. 

The linear code ran well, but the grid velocity soon developed a large oscillation. 
It was necessary to average the grid velocities to smooth out this wobble. 

There was also an oscillation in adjacent m and B values near the surface. This 
has been noted in the static solvers [4] and is due to the instabilities inherent in the 
linear FEM when applied to the initial value equations for m and B. As long as the 
time step was small (d, < 0.01) the oscillation did not increase with time. 

Previous runs with the static solvers have also indicated that the accuracy near 
the centre is poor. To test this we set up special initial data which artificially flat- 
tened X near the centre (and therefore changed the total mass). 

The inaccuracy near the centre indeed appeared, but as a wave in V which was 
amplified catastrophically as the evolution progressed. However, it was heavily 
damped radially, and never extended beyond the sixth node of a 66-node run. As all 
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quantities behaved well outside this wave we tried to remove it by fitting a straight 
line to the quantities near the centre. This was successful, making almost no dif- 
ference to results outside the central nodes. 

The cubic Hermite code (IIa) did not need the grid velocity averaging, and was 
stable with d, = 0.05. However, it was evident that the evolution of V,, was not ade- 
quate, and that this was dragging the other variables. The mass, for instance, was 
slowly increasing (a 0.9 % change after 540 evolutions). As the V,, were behaving 
satisfactorily we decided to take V,, = V,,/r,, a linear tit in the central element. 
This helped, but the mass was still increasing and the Vzj were not evolving well. 

The cubic Lagrange code (IIb) did not exhibit any central instabilities, but did 
have an oscillation in V near the surface. To smooth the oscillation we took 

where the Vii are calculated directly and the Vzi from the (known) Lagrange 
approximation. With d, = 0.1 the evolution was quite satisfactory. After 1080 steps 
(t=63M) the central enthalpy had changed by 0.002%, and the total mass by 
0.9%. 

It is of interest to approximate X with cubic Lagrange splines also. This is quite 
simple to code, but the results are poor. The central enthalpy is not static, and 
(with d, = 0.1) had decreased by 7.4% after 1080 evolutions. A smaller time step 
may stabilize these results, but we did not continue developing this code. 

To compare the codes they were given almost identical static initial data, and 
allowed to run with identical parameters. The results are summarized in Table I. All 
the cubic codes are noticeably better than the linear code, and code IIb (Lagrange 
splines for V) is the best of the cubic codes. 

TABLE I 

A Comparison of Evolutions from Static Initial Data (w, = 1.178) 

Code Linear (I) Cubic(IIa) Cubic (IIb) Cubic (UC) 

Nodes 
4 

Evolution 

Number 
Time 
dw/w 
dmJm 
V S”dW 

34 34 32 32 32 
0.01 0.05 0.1 0.1 0.1 

500 100 100 100 
7.01M 7.02M 7.02M 7.02M 

8.6 x 10-Z% - -4.0 x 10-90 -86x10-5% 5.8 x 10-3% 
0.0094 % 0.22% 0.0055% -0.46% 

0.40 x 10-Z - 0.32 x 10-j -0.98 x 1O-4 0.42 x 1O-2 

Note. M is the initial surface mass, dm/m is the relative change in mass and dw/w is the relative 
change in central enthalpy. Note that dw/w, &n/m and Vsuflal,, should be zero. The linear code with 
d, = 0.05 is unstable and did not reach f = 7.0144. Code IIc uses cubic Lagrange splines for both the X 
and V evolutions. 
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9. Two DYNAMIC EVOLUTIONS 

We started from static solutions with w1 = 1.178 and 25.0, and ran the initial 
value code with a = 0.4. The two sets of initial data are summarized in Table II. 

The Ll evolution required d, = 0.01 which seriously increases the computational 
time required. It evolved 14,000 times, but by t (“0”“)=219M (where M is the sur- 
face mass on the initial slice) the mass had increased by an amount equal to the 
two-step surface oscillation (2.3 % ). Also the central enthalpy was beginning to 
increase to an extent which seemed unphysical although there were no obvious 
numerical defects. 

Unfortunately the Cl run with code IIb exhibited large instabilities in V near the 
surface, which seemed to be independent of time step size. Trial and error even- 
tually produced a method which successfully smoothed the wobble. It fits two 
quadratics to V, one at r, and rsp 2 and one at r,- i and rse2, and then averages the 
two curves. 

This code an extremely well. With d, = 0.1 the run continued to t(4000) = 415A4, at 
which time the evolution seemed to have settled down to a static situation. The 
mass was conserved to 0.6%, which is very good for a 27-node run. 

Figure 1 compares the central enthalpy in the Ll and Cl evolutions. It is 
apparent that the linear code, as was suspected, becomes inaccurate near the centre. 
In Fig. 2 the final enthalpy configuration reached by Cl is compared with a static 
model with central enthalpy equal to 1.178. The agreement is good, although it 
does point out some interesting behaviour near the centre. This is partly due to the 
rebound which occurred near t = 120M (Fig. l), but we feel that the first five points 
exhibit numerical inaccuracies. 

In Table III we further compare the Ll and Cl evolutions. Note especially that 
the Cl code is marginally faster per evolution. This is due to the constraint solver, 

TABLE II 

A Summary of the Four Sets of Initial Data Used To Test Dynamic Evolutions 

Data set 
Number 
of nodes w (centre) B (centre) 

m (surface) 
(cm) 

rs 
(cm) 

Ll 

cFinear ) 
(cubic) 

L2 

&linear) 
(cubic) 

28 1.223 0.7466 72,372 817,820 0.95 0.037 

27 1.223 0.7466 72,527 820,472 0.84 0.034 

59 31.04 0.00318 49,68 1 395,358 0.69 0.00047 

64 31.04 0.00318 49,684 397,013 0.76 0.0033 

Note. The Ll and Cl data sets are based on wmtn= 1.178 static data, and the other two sets on 
wWnlre = 25.0 static data. 
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FIG. 1. The central enthalpy is graphed against time for some representative points during the Ll 
and Cl evolutions. The Xs are from the 151 evolution and the +‘s are from a Cl evolution using the 
mixed cubic Lagrange-cubic Hermite code. 

k 
26 ,tl 

FIG. 2. The enthalpy versus radius points (3%) at t WOW = 415M from the mixed cubic code for the 
Cl initial data. As a comparison a static configuration with ~,,r~~ = 1.178 is graphed with the + signs. 
The Cl initial data are a modification of this data, indicating that the model has relaxed to the static 
configuration. 
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TABLE III 

A Comparison of Evolutions from the Ll and Cl Initial Data at a Late Time 

Code 
Evolution 
number 

Average computer 
w r Computer time per 

Time dmjm (centre) (surf) time evolution 

Linear (Ll) 
code I 

d, = 0.01 
Cubic (Cl ) 

code llb 
d, =O.l 

11000 185.9M 2.2% 1.221 15.1M 1681 set 0.15 set 

28 nodes 
1045 185.3M -0.15% 1.174 12.2M 136 set 0.13 set 

27 nodes 

Note. M is the initial surface mass and drn/m is the relative change in the surface mass. 

which is a one-step method in the cubic code and a two-step method in the linear 
code. 

The initial configurations with wi = 31.04 were expected to collapse quickly, as 
they are highly relativistic, and based on static models which are unstable. This is 
exactly what happened. Indeed, the collapse was so fast that much larger time steps 
could be used, as the instabilities did not become significant. 

Two L2 runs were made, one with d, =O.Ol (14,000 evolutions) and one with 
d,= 0.2 (255 evolutions). The behaviour was almost identical in both cases, 

t 

I 
OO rim 44 BM 

FIG. 3. Lines of constant mass at O.lM intervals, graphed in the r, t plane. The data are from the L2 
evolution with d, = 0.2, and indicate the development of an event horizon. 
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1M 

FIG. 4. The Xs are representative of the central B versus time for the linear L2 evolution. The + 
signs are from the equivalent cubic run. These central B values indicate the ratio of proper time at the 
centre with Schwarzschild time. 

although the d, = 0.2 run seemed a bit better. At to”) = 37.7M (d, = 0.2) the mass 
had decreased by 1.8%, while at t (9200) = 36 8M (d, = 0.01) the mass had increased . 
by 2.3%. At this time 2m/r had almost become unity at a point near the surface, 
indicating the development of a horizon. Only live or six nodes were available for 
that part of the star which was still “outside,” and this number is insufficient for an 
accurate model. The overall behaviour is summarized in Fig. 3, which graphs curves 
of equal mass in r and t. The cubic Lagrange code (IIb) produced adequate models 
with d,.= 0.5, but did not conserve the mass as well as the linear code, the mass 
having changed by 3% at t (72) = 37.6M. This is probably due to the time step dif- 
ference. 
A comparison showing the agreement between the runs is given by Fig. 4, which 
graphs the logarithm of central B against time. The collapse is almost a free fall so 
this graph is very close to a straight line. 

10. CONCLUSIONS 

We can say with some confidence that the mixed FEM-FDM is successful in 
modelling spherical symmetric collapse. There are still problems involved with 
stability, but we note that an artificial viscosity has not been included in any of the 
codes. 

The FEM as applied here has required quite a lot of work, both in the dis- 
cretization and in the programming. This stems from the generality of the 
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calculations, as the whole mechanism of the FEM must be used. However, it is not 
necessary to include many extra calculations when the method is extended to more 
dimensions. This is notable in the element size and geometry, and in the inclusion 
of grid velocities. 

It is difficult to give quantitative comparisons with the FDM because of the dif- 
ferent computers involved, but we feel that the FEM codes are significantly slower. 
This is due to the integration which requires special calculations at each integration 
node. We expect that this can be greatly improved, but more work remains to be 
done. 

We conclude that the FEM is not a good alternative to the FDM for one-dimen- 
sional codes, but that it is sufficiently successful to warrant attacking two- or three- 
dimensional problems where the FEM’s particular advantages may become evident. 
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